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We consider a special case of the n-component cubic model on the square lattice, for which an expansion
exists in Ising-type graphs. We construct a transfer matrix and perform a finite-size-scaling analysis to deter-
mine the critical points for several values of n. Furthermore we determine several universal quantities, includ-
ing three critical exponents. For n�2, these results agree well with the theoretical predictions for the critical
O�n� branch. This model is also a special case of the �N� ,N�� model of Domany and Riedel. It appears that the
self-dual plane of the latter model contains the exactly known critical points of the n=1 and 2 cubic models.
For this reason we have checked whether this is also the case for 1�n�2. However, this possibility is
excluded by our numerical results.
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I. INTRODUCTION

The n-component cubic model can be defined in terms
of vector spins that are restricted to lie along one of n Car-
tesian axes, but are free to assume the positive or negative
direction. Only one vector component is nonzero; it is nor-
malized to be ±1. The model can be described by the reduced
Hamiltonian

H/kBT = − �
�ij�

�Ksi
� · sj

� + M�si
� · sj

� �2� , �1�

where the index i of the cubic spin s�i refers to the sites of the
square lattice. The sum on �ij� stands for all nearest-neighbor
pairs. This model obviously combines Potts degrees of free-
dom �the choice of the Cartesian axis, which is subject to
permutation symmetry� with Ising degrees of freedom which
specify the sign of the nonzero component. This is more
explicit in the following form of the Hamiltonian:

H/kBT = − �
�ij�

�Ksisj + M���i�j
, �2�

where we represent the sign of the nonzero component of si
�

by si= ±1 and its Cartesian axis number by �i=1,2 , . . . ,n.
The corresponding bond weight wij can be rewritten as

wij = exp��Ksisj + M���i�j
�

= 1 + ��i�j
�exp�Ksisj + M� − 1� = 1 + ��i�j

n�v + xsisj�

= �
bij=0

1

���i�j
n�v + xsisj��bij . �3�

In the second line we have used the definitions

v �
eM cosh K − 1

n
and x �

eM sinh K

n
, �4�

and in the third line we have introduced bond variables bij
=0 or 1, and the summand is subject to the rule 00=1. Thus
the partition sum assumes the form

Zcub = �
	s
,	�


�
�ij�

�
bij=0

1

���i�j
n�v + xsisj��bij . �5�

Application of the Kasteleyn-Fortuin mapping �1� involves
execution of the sum on the Potts-type variables 	�
. This
leads to

Zcub = nN�
	s

��

�ij�
�

bij=0

1

�v + xsisj�bijnnl, �6�

where N is the number of sites of the lattice. Note that each
bond �by which we mean a bond variable bij =1� contributes,
through the Kronecker �, also a factor 1 /n, unless it closes a
loop. The latter condition is accounted for by the factor nnl,
where nl is the number of loops formed by the bond vari-
ables. Each configuration of bond variables bij defines a
graph on the square lattice covering those and only those
edges for which bij =1. For the special case

cosh K = e−M or v = 0, �7�

the partition sum reduces, after execution of the sum on 	s
,
to

Zcub = �2n�N�
	b


xnbnnl, �8�

where the sum on 	b
 contains only even graphs in which
every site is connected to an even number of bonds bij =1.
The odd graphs, while included in the sums on the bij in Eq.
�6�, do not survive the sum on 	s
. The number of bonds in
the graph 	b
 is denoted nb���ij�bij.*Electronic address: waguo@bnu.edu.cn
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The cubic loop model described by Eq. �8� is subject to
the restriction �xn � �1 because of Eq. �7�. This model, and
the model defined by Eq. �1� with M =0, �both on the square
lattice� have already been investigated by a transfer-matrix
method �2�. That work included a determination of the tem-
perature exponent. The results for n�2 were in agreement
with a conjecture of Cardy and Hamber �3� and the analysis
of Nienhuis �4�. However, the latter work applies to the
n-component cubic model on the honeycomb lattice, of
which the graph expansion reduces to that of the O�n� model.
For other lattices, no such direct correspondence exists, and
the relevance of the results of Ref. �4� for the cubic model on
the square lattice thus needs further justification. This is pro-
vided by renormalization arguments that predict that cubic
anisotropy is irrelevant �5� for n�2. However, for n=2 it is
marginal, and indeed the temperature exponent does not
agree with the O�2� model �2�.

Our work is motivated by the following considerations.
The literature �6� contains extensive investigations of various
O�n� models that may serve to describe XY or Heisenberg-
type spin systems. In reality, such spin systems are subject
to symmetry-lowering perturbations depending on the geom-
etry of the crystal lattice. The effects of such perturbations
have been analyzed by renormalization techniques, whose
results rely on assumptions. It is thus desirable to obtain
independent verification of these results by numerical tech-
niques. For the case of cubic anisotropy, this situation sug-
gests an extension of the investigation of Ref. �2� to the
range 1�n�2. Furthermore, the present analysis will pur-
portedly yield information about other universal quantities in
addition to the temperature exponent determined in Ref. �2�,
so that the renormalization scenario can be tested with
greater sensitivity. Another reason behind this work is that
our technique allows us to explore the possibility that the
critical points of the cubic model are subject to a duality
relation.

The outline of this paper is as follows. Section II dis-
cusses a duality transformation in a three-dimensional pa-
rameter space containing the cubic model Eq. �8�. This trans-
formation suggests a possible form of the critical line of the
cubic model. However, transfer-matrix calculations, defined
in Sec. III, yield numerical results listed in Sec. IV, which
show that this form is not applicable. The universal proper-
ties of the cubic model are investigated in Sec. V. The paper
concludes with a short discussion in Sec. VI.

II. SELF-DUAL PLANE OF THE „N� ,N�… MODEL

The partition function of the �N� ,N�� model �7� is defined
as

Z�m,n��eK0,eK1,eK2,eK3� � �
�=1

m

�
�=1

n

�
edges

B��,����,��� , �9�

where m=N�, n=N�, and

B��,����,��� � exp�K0�������� + K1�1 − ���������

+ K2�����1 − ����� + K3�1 − ������1 − ������ .

�10�

Just as the cubic model, the model can be viewed as having
two Potts spins � and � on each lattice site, with allowed
values �=1,2 , . . . ,m and �=1,2 , . . . ,n. These spins interact
with nearest-neighbor couplings according to the Boltzmann
weights �10�. Note that these weights are elements of the
�mn�� �mn� matrix

B = eK0Im � In + eK1Jm � In + eK2Im � Jn + eK3Jm � Jn,

�11�

where In and Jn are n�n matrices

In =�
1 0 ¯ 0

0 1 ¯ 0

� � � �
0 0 ¯ 1

�, Jn =�
0 1 ¯ 1

1 0 ¯ 1

� � � �
1 1 ¯ 0

� . �12�

We consider a model on a planar lattice with open bound-
ary conditions. The partition sum �9� possesses the duality
relation �8�

Z�m,n��eK0,eK1,eK2,eK3� = �mn�1−NDZ�m,n�
�D� �eK0

*
,eK1

*
,eK2

*
,eK3

*
� ,

�13�

where ND is the number of sites of the dual lattice, and Z�D�

the dual partition function, with Boltzmann weights also
given by Eq. �10� but with the Ki replaced by the dual
weights Ki

*. The latter weights were shown �8� to be equal to
the eigenvalues of the matrix B. For the �m ,n� model, these
are �7�

�
eK0

*

eK1
*

eK2
*

eK3
*
� =�

1 m − 1 n − 1 �m − 1��n − 1�
1 − 1 n − 1 − �n − 1�
1 m − 1 − 1 − �m − 1�
1 − 1 − 1 1

��
eK0

eK1

eK2

eK3
� .

�14�

Note that �14� implies e�Ki
*�*

= �mn�eKi, and hence �Z�D���D�

=Z, because the number of lattice edges E satisfies Euler’s
relation E=N+ND−2 and each lattice edge contributes a fac-
tor mn. Equation �13� then shows that the powers of mn
cancel after a pair of duality transformations.

With the notation

xi � eKi/eK0, xi
* � eKi

*
/eK0

*
�i = 1,2,3� �15�

the Boltzmann factor can be written as

B��,����,��� = eK0x1
�1−���������x2

�����1−�����x3
�1−������1−�����.

�16�

Phase transitions will naturally occur in the
x= �x1 ,x2 ,x3� parameter space. Thus, the free energy of the
�m ,n� model is expected to be nonanalytic on a correspond-
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ing surface 	. Generally, as the temperature variable in a
given model varies, the point �x1 ,x2 ,x3� traces out a certain
“thermodynamic” path 
 in x, and the model exhibits a tran-
sition whenever 
 crosses 	.

Using �14� we find the transformation

x1
* =

1

�
�1 − x1 + �n − 1�x2 − �n − 1�x3� ,

x2
* =

1

�
�1 − �m − 1�x1 − x2 − �m − 1�x3� ,

x3
* =

1

�
�1 − x1 − x2 + x3� , �17�

where

� = 1 + �m − 1�x1 + �n − 1�x2 + �m − 1��n − 1�x3. �18�

The square lattice maps onto itself under the dual transfor-
mation, so that the free energies at two points xi and xi

*

satisfying Eq. �17� are related. One also verifies that the sub-
space

� = �mn �19�

is self-dual under the transformation Eq. �17� �but a point in
this plane does, in general, not map on itself�.

We note that the partition sum of the cubic loop model
described by Eq. �5� with v=0, i.e., the model of Eq. �8�, can
be written as

Zcub = �
	s
,	�


�
�ij�

�1 + nxsisj��i�j
� . �20�

By introducing �k��sk+3� /2, and the identities

sisj = 2��i�j
− 1 �21�

we find the equivalence

Zcub = Z�2,n��eK0,eK1,eK2,eK3� �22�

with

eK0 = 1 + nx, eK1 = 1 − nx, eK2 = eK3 = 1 �23�

or

x1 =
1 − nx

1 + nx
, x2 =

1

1 + nx
, x3 =

1

1 + nx
. �24�

This specifies the mapping of the n-component cubic loop
model on the �N�=2,N�=n� model. Using the dual transfor-
mation �17�, this gives rise to

x1
* = x3

* = x, x2
* = 0. �25�

Hence the dual thermodynamic path 
 of the cubic loop
model is the straight line connecting �0,0 ,0� and �1,0 ,1�, a
result valid for all n.

For two special cases, namely n=1 and n=2, the critical
point of the cubic loop model sits at the intersection of
the critical surface 	 and the thermodynamic path 
 in the
x2=0 plane.

We first consider the case n=1, or ��i�j
=1, in which the

model simply reduces to the Ising model. The Boltzmann
factor �16� assumes the form

B��,����,��� = eK0x1
1−���� �26�

for any values of x2 ,x3. The critical surface is thus
x1=�2−1. This plane intersects the thermodynamic path 
 at
x1=x3=x=�2−1, so that the critical point of the cubic loop
model is xc=�2−1.

For the case n=2, the model, i.e., the �2,2� model, is
the well-known Ashkin-Teller model �9�. The shape and
location of 	 have been discussed by Wu and Lin �10�.
The thermodynamic path 
 crosses the critical surface 	 at
x1=x3=1/2 within the x2=0 plane �10�. Thus the critical
point of the cubic loop model occurs at xc=1/2.

While it is known that most of the self-dual plane of the
�N� ,N�� model is noncritical, it is interesting that for both
n=1 and n=2, the critical points of the cubic loop model are
actually located in the self-dual plane. If this is true for gen-
eral 1�n�2, we would have

1 + x1 + �n − 1�x3 = �2n �27�

on the x2=0 plane, and x1=x3=x, because the critical point
lies on the thermodynamic path 
. Thus the critical value of
x would be

xc�n� = ��2n − 1�/n for 1 � n � 2. �28�

This possibility will be investigated numerically in Sec. IV.

III. THE TRANSFER MATRIX

The transfer-matrix method used here is related to that
used in Ref. �2�, and it uses in addition some of the tech-
niques described in Refs. �11,12� for the random cluster and
the O�n� model, respectively. The full description of the
transfer matrix is somewhat elaborate, and here we only pro-
vide a general outline, supplemented with more detailed in-
formation where the procedure is different from those in the
references given.

As in Ref. �2�, the transfer matrix is constructed on the
basis of a graph representation of the cubic model that allows
n to be noninteger. However, the present work is restricted to
the case v=0, so that the graphs are restricted to be even.
This allows the use, given a system size, of a smaller transfer
matrix than that used in Ref. �2�. We define the model on an
L�m lattice Lm wrapped on a cylinder, such that the finite-
size parameter L is the circumference of the cylinder. The
definition of the transfer matrix can be illustrated by append-
ing row m+1 and determining how this affects the partition
sum of the model. The lattice Lm has an open end at row m;
there are L dangling edges that will serve to connect to row
m+1 later. Whereas the partition sum Eq. �6� allows only for
closed loops, the bond configuration on Lm may be consid-
ered a part of a larger graph so that we allow the dangling
edges to be occupied by loop segments. But all sites are still
restricted to connect to an even number of bonds. For the
construction of the transfer matrix, we need a coding of all
possible ways �called connectivities� that the dangling bonds
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can be connected by the graph 	b
 on Lm. This coding as-
signs a unique integer 1 ,2 , . . . , which will serve as the
transfer-matrix index, to each connectivity. Some of the dan-
gling edges may be empty, i.e., bij =0. The remaining dan-
gling edges, i.e., the dangling bonds, form a dense connec-
tivity without vacant positions. Note that these dense
connectivities satisfy a well-nestedness principle which as-
serts that, if positions i and k are connected, and j and l are
connected, with i� j�k� l, then all i , j ,k , l must be con-
nected. Thus, these dense connectivities form a subset of the
random cluster or Whitney connectivities defined in Ref.
�11�. The number of dangling bonds that are connected by a
path of bonds must always be even for the cubic model; this
restriction does not apply to those of Ref. �11�. By simply
excluding the odd connectivities, we thus find coding and
decoding algorithms for the dense cubic connectivities. The
coding of the general cubic connectivities including vacant
positions then follows analogous to the case of the magnetic
connectivities in Ref. �11�.

This coding allows one to divide the partition sum Z�m� of
the m-row system in contributions corresponding with differ-
ent connectivities,

Z�m� = �
�

Z�
�m�. �29�

Next, we append a new row lm+1 to the lattice:
Lm+1�Lm� lm+1, and express the restricted partition sums
Z�

�m+1� as a linear combination of the Z�
�m�. This is possible

because the weight due to the newly appended row is com-
pletely determined by the bond variables connecting to the
appended vertices and the old connectivity �, and this infor-
mation also determines the new connectivity �. We use bm+1
to denote the 2L appended bond variables, and ��� ,bm+1� to
denote the function that determines �. The weight factor as-
sociated with the new row satisfies

w��,bm+1� = �2n�Lx�nbn�nl, �30�

where �nb is the number of appended bonds and �nl is the
number of loops closed by these bonds. The recursion con-
necting the restricted sums is

Z�
�M+1� = �

�

T��Z�
�M�, �31�

in which the transfer matrix T�� is defined by

T�� = �2n�L �
bm+1

��,���,bm+1�x
�nbn�nl. �32�

In actual calculations, the transfer matrix is represented as
the product of L sparse matrices, each of which appends one
new vertex of the �m+1�th row. The first vertex of a new row
increases the number of dangling edges to L+2, so that the
sparse matrices assume a larger size than T��. After append-
ing the last vertex of that row, the number of dangling edges
decreases to L. This technical point was described in some
detail for the related case of the O�n� model on the square
lattice �12�.

The sparse-matrix technique makes it unnecessary to store
the full transfer matrix T. Some of its eigenvalues can be
obtained by repeated multiplication of a vector by T, and
analysis of the resulting vector sequence. Since T�� is not
symmetric in general, we used the method of projection to a
Hessenberg matrix as described in Ref. �11�. We restricted
the calculations to vectors with translation symmetry, i.e.,
vectors that are invariant under a permutation of connectivi-
ties corresponding with a cyclic permutation of the dangling
edges. In general, the largest eigenvalue L

�0� determines the
free energy f�L� per site in the limit of an infinitely long
cylinder �m→ � �,

f�L� = L−1 ln L
�0�. �33�

Furthermore, the next largest eigenvalues L
�i� �i=1,2 , . . . �

determine the correlation lengths �i�L� of various types of
correlation functions. The latter types depend on the symme-
try of the corresponding eigenvector and on possible modi-
fications of T. In particular, the correlation length �t�L� of the
energy-energy correlation function is determined by the gap
between the two largest eigenvalues,

�t
−1�L� = ln�L

�0�/L
�1�� . �34�

For the cubic model, magnetic correlations can be repre-
sented, in analogy with the O�n� model, by graphs with odd
vertices on the correlated sites. For the present model that
means sites connected to one or three bonds. The two corre-
lated sites, which are placed far apart in the length direction
of the cylinder, must be connected by the graph, i.e., belong
to the same component of the graph. This additional compo-
nent does not follow the rules of evenness listed earlier. The
number of dangling bonds at the open end of the cylinder
�between the correlated sites� connecting to the additional
odd vertex must be odd. To describe such magnetic graphs
we define a new set of connectivities in which one group of
connected dangling bonds is odd. This leads to a modified
transfer matrix, which may alternatively be interpreted as the
magnetic sector of a larger transfer matrix whose vector
space includes both even and odd connectivities. The gap
between L

�0� and the largest eigenvalue L
�2� in the magnetic

sector determines the magnetic correlation length �h�L� as

�h
−1�L� = ln�L

�0�/L
�2�� . �35�

A different type of magnetic gap is associated with the
density of the loops spanning the circumference of the cyl-
inder. The weight of these loops is modified by assigning a
bond weight −x to one bond in each row. A loop spanning the
circumference contains an odd number of these modified
bonds, and its weight thus changes sign. All other loops con-
tain an even number of modified bonds and their weights are
thus unchanged. We denote the largest eigenvalue of the
modified transfer matrix by L

�3�. It determines the length
scale �m�L� that may be associated with the effect of an an-
tiferromagnetic seam running along the cylinder. For the
critical Ising case n=1, both magnetic length scales are re-
lated by duality, but this is not so for general n. The corre-
sponding length scale is given by
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�m
−1�L� = ln�L

�0�/L
�3�� . �36�

In the actual transfer-matrix calculations, we have used finite
sizes up to L=15 in the nonmagnetic sector, which then has
dimensionality 2 004 032, and up to L=14 in the magnetic
sector, which then has dimensionality 3 856 582.

IV. DETERMINATION OF THE CRITICAL LINE
OF THE CUBIC MODEL

The asymptotic behavior of the magnetic correlation
length �h�L� near a critical point can be expressed in terms of
the scaled gap

Xh�t,u,L� �
L

2��h�t,u,L�
, �37�

where t parametrizes the distance to the critical point, and u
represents an irrelevant field. Renormalization arguments
�13�, scaling �14�, and conformal invariance �15� predict that
for large L

Xh�t,u,L� � Xh + a1Lytt + b1Lyuu + ¯ , �38�

where Xh is the magnetic scaling dimension, yt the tempera-
ture exponent, and yu the exponent of the field u, and a1 and
b1 are unknown amplitudes. Further corrections may also be
present. Since we have an algorithm available that calculates
Xh�t ,u ,L� �with t and u expressed as a function of x�, we can
estimate the critical point by numerically solving x in the
equation

Xh�x,L� = Xh�x,L + 1� , �39�

which is a form of phenomenological renormalization �16�.
After substitution of Eq. �38� one finds that, at the solution, t
and u satisfy

t � uLyu−yt. �40�

Since yt�0 and yu�0, we expect that t→0 for L→�, i.e.,
the solutions of Eq. �39�, which we denote x�0��L�, converge
to the critical point. These solutions were fitted by solving
for x�1��L�, c�1��L� and yu−yt in the three following equations
with L�=L, L−1, and L−2:

x�0��L�� = x�1��L� + c�1��L�L�yu−yt, �41�

which leads to a sequence x�1��L� that is shorter than the
original sequence x�0��L� but usually shows faster apparent
convergence. Another iteration step can be attempted on the
basis of

x�1��L�� = x�2��L� + c�2��L�L�yu�−yt, �42�

which may lead to even better estimates of the critical point.
A similar analysis of the critical point can be performed

on the basis of the scaled interface gap

Xm�t,u,L� �
L

2��m�t,u,L�
, �43�

using the same type of fits as for the scaled magnetic gap.
We have also attempted to find solutions of Eq. �39� with

�h replaced by the energy-energy correlation length, but here

complications arise. The functions Xt�x ,L� typically display
an extremum near the critical point, and solutions of the
scaling equation Eq. �39�, with Xt instead of Xh, do not al-
ways exist. In particular for n�1 we did not obtain a satis-
factory set of solutions, and we have not pursued this way to
obtain further data for the critical point. Instead, we located
the extremum of Xt�x ,L� as a function of x. The finite-size-
scaling equation for the correlation length indicates that this
extremum will converge to the critical point.

The estimated critical points are shown in Fig. 1. For
1�n�2 they do not agree with Eq. �28�. For instance, that
equation would predict xc=0.48803¯ for n=1.5, which is
incompatible with the numerical result �see also Table I�.
Thus we must conclude that Eq. �28�, which does indeed
lack a solid basis, is not valid for all values of n.

Several modified fitting procedures were applied. Assum-
ing that the cubic model reduces to the O�n� universality
class, we have analytic evidence for the values of yu and yu�
as a function of n. First, according to the renormalization
scenario, the cubic perturbation of the O�n� symmetry corre-
sponds with an irrelevant field with an exponent �5�

yc =
�1 − g��1 + 3g�

2g
, �44�

where cos��g�=−n /2 and 1�g�2. Corrections due to this
field are expected to be serious for n→2, since yc→0. Sec-
ond, irrelevant temperaturelike fields may correspond with
some scalar operators whose dimensions are entries X1,q with
q�3 in the Kac table �17,18�,

Xp,q =
�p�m + 1� − qm�2 − 1

2m�m + 1�
, �45�

with m=1/ �g−1� for the cubic model �19�. For q=5 we find
an irrelevant exponent

yi =
6g − 12

g
. �46�

which has small values for n�0 but becomes marginal when
n→−2. The final results, and their estimated errors, were
obtained from the analyses of the three types of scaled gap,

FIG. 1. Critical points of the v=0 cubic model. The data points
show the numerical results of the transfer-matrix analysis, and the
curve is added as a guide to the eye. The estimated error bars are
smaller than the size of the symbols.
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and the degree of consistency between different types of fits
mentioned above. The best estimates obtained from
Xh�t ,u ,L� and Xm�t ,u ,L�, and the overall best estimates
which also include data from Xt�t ,u ,L�, are shown in Table I.

V. UNIVERSAL PROPERTIES OF THE CUBIC
MODEL

The asymptotic finite-size dependence of the free energy
per site at the critical point is �19,20�

f�L� � f��� +
�c

6L2 , �47�

where c is the conformal anomaly of the model, which char-
acterizes universality classes and determines sets of critical
exponents �21,22�. We have calculated the finite size data for
the free energy at the extrapolated critical points, and esti-
mated c as c�1��L� from the free energy density for two con-
secutive system sizes by solving

c�1��L� = 6�f�L� − f�L + 1��/��	1/L2 − 1/�L + 1�2
� .

�48�

This leads to a sequence of estimates of c that can be ex-
trapolated by means of power-law fits, analogous to the pro-
cedure used to determine the critical points. After a second
iteration step, the estimates of c seem almost converged, in
the sense that the results for the largest few values of L
display differences of only a few times 10−5. But at the
same time these data display a shallow extremum �except for
n=1 and 2, where the apparent convergence is much better�,
so that it is difficult to estimate the uncertainty in the ex-
trapolated results. Because the first iteration step shows that
the finite-size exponent of the estimates of c is close to −2,
we have also applied iteration steps with the exponent fixed
at this value. The results were similar to those obtained with

free exponents, and again displayed a shallow extremum.
Under these circumstances we made a crude error estimate of
10 times the difference between the two estimates for the
largest available L values, after two iteration steps. The best
estimate was taken by extrapolating the last two estimates,
using again ten times the aforementioned difference. A better
apparent convergence was found when a fixed exponent
yc−2 was used in the second iteration step. The results are
shown in Table II. The numerical errors were estimated from
the finite-size dependence of the results of the last fit proce-
dure, except for n=1.9, where the error bars of both fit pro-
cedures did not overlap and we used the difference between
both types of fit instead. Most of our results are in good
agreement with the theoretical values,

c = 1 −
6�g − 1�2

g
. �49�

which follow after the substitution of the formula �19�
m=1/ �g−1� in the relation �21� between m and c, i.e.,
c=1−6/ �m�m+1��. But the result for n=1.9 does not agree
well with the theoretical value; we note that the small value
of the cubic crossover exponent, which becomes marginal at
n=2, may well lead to imprecise results and error estimates.

Next, we analyze the results for the magnetic gaps. After
substitution of the solutions of Eq. �39�, which behave as Eq.
�40�, in Eq. �38�, one finds that the magnetic scaled gaps at
the solutions converge to Xh as

Xh�L� = Xh + ruLyu + ¯ , �50�

where r is an unknown constant. The magnetic scaled gaps at
the solutions of the scaling equation in the preceding section
were already available. They were fitted using a similar pro-
cedure as used for the determination of the critical points. We
found that the leading irrelevant exponent was consistent
with the predicted cubic perturbation exponent given in Eq.
�44�, and we accordingly treated yu as a known parameter in

TABLE I. Critical points xc as determined from the scaling formulas for the magnetic and interface
correlation length for system sizes L and L+1, and from the extrema of the energylike correlation length
as x is varied. The estimated numerical uncertainty in the last decimal place is shown in parentheses. The
best estimates are based on the results in the two preceding columns and on an analysis of the minima in the
functions Xt�x ,L� as described in the text. For n=1 we find accurate agreement with the exact result xc

=�2−1, and for n=2 with xc=1/2.

n xc �from Xh� xc �from Xm� xc �best estimate�

1.0 0.4142134 �2� 0.4142135 �1� 0.4142135 �1�
1.1 0.419155 �5� 0.419154 �2� 0.419154 �2�
1.2 0.424530 �5� 0.424527 �2� 0.424528 �2�
1.3 0.43042 �1� 0.430415 �5� 0.430416 �5�
1.4 0.43695 �2� 0.436935 �5� 0.43694 �1�
1.5 0.44423 �5� 0.44424 �1� 0.44424 �1�
1.6 0.45257 �5� 0.45254 �1� 0.45254 �1�
1.7 0.46212 �5� 0.46214 �1� 0.46214 �1�
1.8 0.4736 �1� 0.47345 �2� 0.47346 �2�
1.9 0.4869 �2� 0.48673 �5� 0.48675 �5�
2.0 0.5000000 �1� 0.4999999 �1� 0.5000000 �1�
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the fits. The extrapolated magnetic scaling dimensions are
shown in Table III. Again, different fit procedures, with the
finite-size exponent left free, and more iteration steps, were
applied.The error estimates are based on the apparent con-
vergence and on the differences between the various types of
fit. The final results appear to agree with the theoretical val-
ues for the O�n� universality class �4�:

Xh =
g

8
−

�1 − g�2

2g
, �51�

where we note that the Ashkin-Teller model �or �2,2� model�
has the same magnetic scaling dimension �23,24� Xh=1/8 as
the O�2� model.

A similar analysis was performed on the scaled interface
gaps at the solutions of the scaling equation for interface
scaled gap. These gaps converge to the interface scaling di-
mension. The results for the interface scaling dimension are
shown in Table III. These results are to be compared with the

known interface exponent in the O�n� universality class �12�,
which are given by the entry p=1,q=2 in the Kac table,

Xm =
3

2g
− 1, �52�

which is obtained by the substitution of m=1/ �g−1� in the
more common form X1,2= ��m−1�2−1� /2m�m+1� of the Kac
formula.

Our result for Xm at n=2 is different from X1,2=1/2 and
thus illustrates that the n=2 cubic loop model falls outside
the O�2� universality class. It is to be compared with results
for the Ashkin-Teller model �24,25� which are also summa-
rized by Baxter �26�. In the notation used there, we have the
exact result �e

8V=3/4 for the end point of the Ashkin-Teller
line at K→�. This exponent may, in our notation, be put
equal to Xm / �2−Xt� where Xt=3/2. This does indeed lead to
Xm=3/8.

TABLE II. Conformal anomaly and temperature scaling dimension Xt as determined by transfer-matrix calculations described in the text.
Estimated error margins in the last decimal place are given in parentheses. For comparison, we include the theoretical values of the O�n�
model for n�2, and of the Ashkin-Teller model for n=2. The numerical results are indicated by num, theoretical values by theory.

n c�num� c�theory� Xt�num� Xt�theory�

1.0 0.50000 �1� 0.50000 1.000000 �1� 1.00000

1.1 0.54820 �2� 0.54820 1.0428 �5� 1.04269

1.2 0.59640 �2� 0.59639 1.0890 �5� 1.08840

1.3 0.64465 �5� 0.64465 1.1385 �5� 1.13782

1.4 0.6931 �1� 0.69309 1.192 �1� 1.19187

1.5 0.7418 �1� 0.74184 1.251 �2� 1.25189

1.6 0.7912 �1� 0.79106 1.319 �2� 1.31996

1.7 0.8410 �1� 0.84096 1.405 �5� 1.39962

1.8 0.8920 �2� 0.89186 1.49 �2� 1.49783

1.9 0.9464 �9� 0.94432 1.60 �5� 1.63279

2.0 1.00000 �1� 1 1.500000 �1� 3/2

TABLE III. The magnetic dimension Xh and the interface dimension Xm as extrapolated from their values at the solutions of the scaling
equation of the correlation length. Estimated numerical uncertainty in the last decimal place are given in parentheses. For comparison, we
include the theoretical values of the O�n� model for n�2, and of the Ashkin-Teller model for n=2. The numerical results are indicated by
num, the theoretical values by theory.

n Xh�num� Xh�theory� Xm�num� Xm�theory�

1.0 0.12499 �1� 0.12500 0.12499 �1� 1/8

1.1 0.12647 �1� 0.12668 0.14105 �5� 0.14101

1.2 0.1280 �1� 0.12826 0.15814 �5� 0.15815

1.3 0.1296 �1� 0.12973 0.1767 �1� 0.17668

1.4 0.1307 �1� 0.13107 0.1969 �2� 0.19695

1.5 0.1316 �1� 0.13224 0.2195 �5� 0.21946

1.6 0.1320 �1� 0.13319 0.244 �1� 0.24499

1.7 0.1335 �3� 0.13382 0.274 �2� 0.27486

1.8 0.1308 �2� 0.13393 0.313 �2� 0.31169

1.9 0.128 �1� 0.13300 0.350 �5� 0.36230

2.0 0.12498 �1� 1/8 0.37500 �1� 3/8
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We also calculated the temperature scaled gaps Xt�x ,L� at
the extrapolated critical points. We expect the following be-
havior of these gaps:

Xt�L� = Xt + puLyu + ¯ , �53�

where p is another unknown constant. Similar fits as before
lead to results for the temperature scaling dimension that are
included in Table II. The results agree with the theoretical
prediction �4� for the O�n� model

Xt =
4

g
− 2, �54�

except for the case n=2, where our numerical result goes to
3/2 in accordance with the exact result �24,25� for the tem-
perature scaling dimension of the Ashkin-Teller model for
K→�.

VI. DISCUSSION

In general, the discreteness of the n-component cubic
model defined by Eq. �1� will enforce the existence of a
long-range ordered phase at sufficiently low temperatures,
also for n�2. However, our transfer-matrix calculations for
v=0 in Eq. �7� did not yield any evidence for a phase tran-
sition to the ordered phase for n�2. The absence of a phase
transition is understandable in terms of the parameters K and
M in Eq. �1�, because Eq. �7� restricts these parameters to
K+M � ln 2. This quantity, which specifies the energy differ-

ence between parallel �si
� ·sj

� =1� spins and perpendicular

�si
� ·sj

� =0� spins, is not sufficient to reach a long-range-
ordered phase for n�2. The maximum value K+M =ln 2
along the critical line is reached for n=2 where K=�.

For n�2 we find clear evidence for a phase transition to
the ordered phase. In the interval 1�n�2 we have deter-
mined the critical points of the n-component cubic model as
given by Eqs. �1� and �7�, or by Eq. �8�. For the exactly
solved cases n=1 and n=2 we find good agreement with the
exact values as given in Table I. Our results for the scaling
dimensions, i.e., Xt associated with the temperature, Xh asso-

ciated with the magnetic field, and Xm associated with the
introduction of an antiferromagnetic seam in the model,
agree accurately with the O�n� universality classes, with the
exception of the case n=2 where the model reduces to a
special case of the Ashkin-Teller model. For the latter case
n=2, our results for the scaling dimensions agree with the
exact results for the Ashkin-Teller model. The fact that these
scaling dimensions are different from those for the O�2� uni-
versality class is related with the cubic anisotropy which may
be seen as a perturbation of the O�n� symmetry. This pertur-
bation is irrelevant for n�2 but marginal �5� for n=2. This
proof of irrelevance for n�2 applies to small cubic pertur-
bations of the isotropy. Our numerical results show that the
cubic perturbation remains irrelevant even in the extreme
anisotropic case described by Eqs. �1� and �7�. However,
when n approaches 2, the exponent yc associated with the
cubic anisotropy field approaches marginality and our nu-
merical results thus become less accurate. The cubic aniso-
tropy is truly marginal at n=2 and parametrizes the Ashkin-
Teller model. For this reason, the cubic crossover phenomena
are absent for n=2 and the numerical results are again rela-
tively accurate. The temperature scaling dimension of the
cubic model and its consistency with O�n� universality were
already determined �2� for a range n�1. The present results
extend the range of n and provide additional evidence con-
cerning the dimensions Xh and Xm. The numerical accuracy
of our analysis is such that the O�n� universality of the cubic
model seems reasonably convincing. We note that numerical
results for the O�n� model on the square lattice �12� are even
more accurate; however, for that case the exact critical point
is known, and the cubic anisotropy field, and thereby the
leading corrections to scaling, vanish.
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